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Solutions — Linear systems: iterative methods

Exercise I (MATLAB)

a) We consider the following implementation of the MATLAB function:

function [ x, k, res ] = preconditioned.gradient( A, b, P, x0, tol, kmax )
PRECONDITIONED_GRADIENT solve the linear system A x = b by means

of the Preconditioned Gadrient method; the preconditioning matrix must be
non singular. Stopping criterion based on the residual.

% [ X, k, res ] = preconditioned_gradient( A, b, P, x0, tol, kmax )
% Inputs: A = matrix (square matrix)
% b = vector (right hand side of the linear system)
% P = preconditioning matrix (non singular, same size of A)
% x0 = initial solution (colum vector)
% tol = tolerence for the stopping criterion based on residual
% kmax = maximum number of iterations
% Outputs: x = solution vector (column vector)
% k = number of iterations at convergence
% res = value of the norm of the residual at convergence
= 0;
x = x0;
r=Db - A x x;
res = norm( r );

while( k < kmax && res > tol )
z =P\ r;
alpha = (z'" ) / (z'" A * z);
x = x + alpha * z;
r = r — alpha » A x z;
res = norm( r );
k =k + 1;




Since the matrix A is symmetric and positive definite, we know that the gradient method is
convergent for all choices of the initial solution x(°). Moreover, since P, is symmetric and
positive definite, we know that the preconditioned gradient method is also convergent.

We consider the following MATLAB commands.

n = 4;

A = diag( 5 %« ones(n, 1), 0 ) + diag( 1 %« ones(n -1, 1), 1) + .
diag( 1  ones(n -1, 1 ), -1 ) + diag( 1 % ones(n -2, 1), 2 ) +
diag( 1 = ones(n - 2, 1), -2 );

x_ex = ones( n, 1 );

b =A% x_ex;

tol = 1.0e-6; kmax = 100;

x0 = zeros( n, 1 );

% gradient method (P=I)

Pl = eye( n );

[ x1, k1, resl ] = preconditioned-gradient( A, b, Pl, x0, tol, kmax );

errl = norm( x_.ex - x1 )

% errl =

% 1.6781e-08

k1, resl

% kl =

% 6

% resl =

% 1.2614e-07

J

The gradient method ensures convergence to the approximate solution x(*¢) satisfying the
prescribed tolerance in k. = 6 iterations.

For the preconditioned gradient method with P = P, we obtain:

% preconditioned gradient method (P=P_2)

P2 = diag( diag( A ) ) + diag( diag( A, 1), 1 ) + diag( diag( A, = 1), = 1);
[ x2, k2, res2 ] = preconditioned._gradient( A, b, P2, x0, tol, kmax );

err2 = norm( xX_.ex — x2 )

% err2 =

% 2.1285e-08

k2, res2

% k2 =

% 4

% res2 =

% 1.5999e-07

J

The convergence to the approximate solution for the prescribed tolerance occurs in k. = 4
iterations.

We start by recalling the following Proposition.

Proposition 1 If the matrix A € R™*"™ is strictly diagonally dominant by row, then the Jacobi
and Gauss-Seidel iterative methods converge to the solution x of the linear system associated
to A, say Ax = b, for any choice of the initial solution x(©).

Since A is strictly diagonally dominant by row, convergence follows for both methods.

We consider the following MATLAB commands.
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Figure 1: Norm of the residual 7(*¥) vs. number of iterations k for the gradient, preconditioned
gradient, Jacobi, and Gauss-Seidel methods.

res_ PGl_.v = []; res_ PG2_v = [];
res.J.v = []; res_.GS_.v = [];
klimit = 50; tol = le-14;
k_vect =1 klimit;
for kmax = k_vect
% gradient
[ xPGl, kPGl, resPGl ] = preconditioned.gradient( A, b, P11, x0, tol, kmax );
res PGl.v = [ res_.PGl_.v, resPGl ];
% preconditioned gardient
[ xPG2, kPG2, resPG2 ] = preconditioned_gradient( A, b, P2, x0, tol, kmax );
res_ PG2_.v = [ res_PG2_v, resPG2 ];
% Jacobi
[ xJ, kJ, resdJ ] = jacobi( A, b, x0, tol, kmax );
res.J.v = [ res_.J.v, resd ];
% Gauss—Seidel
[ xGS, kGS, resGS ] = gauss.seidel( A, b, x0, tol, kmax );
res.GS.v = [ res_.GS_.v, resGS ];
end
semilogy( k_vect, res_PGl.v, '-b', k_vect, res PG2.v, '-r',
k_vect, res_.J.v, '-m', k_vect, res_GS.v, '—k' ) ;
axis( [ 1 klimit 1e-13 10 1)
legend('Gradient', 'Prec.Gradient', 'Jacobi', 'Gauss—Seidel' );

J

We obtain the result reported in Figure 1. We deduce that, in this case, the preconditioned
gradient method with P = P, ensures a faster convergence than with the gradient, Jacobi,
and Gauss-Seidel methods.

Exercise II (MATLAB)

a) The stopping criterion based on the relative residual is satisfactory if the conditioning number
of the matrix A is not “too large”. Indeed, the following estimate for the relative error on the




solution e(k) = lx=xB] holds:

rel = x|
65«2 §K2<A)7’,,(,Izl), forall k=0,1,...,
where r£§2 = ”ﬂ;:ﬁ” is the relative residual and K3(A) is the condition number of the matrix
A.

We verify that the condition number of the matrix A is very “large” by using the following
MATLAB commands:

nl = 15;

Al = hilb( nl );
k2.1 = cond( Al )
% k2.1 =

% 4.4333e+17

We verify the answer given at point a) with the following MATLAB commands:

xl_ex = ones( nl, 1 );

bl = Al * x1l_ex;

x1_0 = zeros( nl, 1 );

% criterion based on RELATIVE residual

tol_rel = 1.0e-5; kmax = 1000;

tol = tol_rel x norm( bl );

[ x1_.gs, kl_gs, resl.gs ] = gauss.seidel( Al, bl, x1.0, tol, kmax );

res.rell_gs = resl_.gs / norm( bl )

% res_.rell_gs =

% 9.9853e-06

rr.rell_gs = norm( xl_.ex - xl_.gs ) / norm( xl_ex )

0]

o

err_rell_gs =
0.0412

o\

J

Convergence to the approximate solution occurs in k., = 599 iterations. We observe that the
(ko) _

relative residual at convergence is rﬁlzlc) = 9.9853 - 107, while the relative error is €rel

4.1220 - 10~2, which is significantly larger than r(*),

The stopping criterion based on the difference of successive iterates is satisfactory if the
spectral radius of the iteration matrix B, denoted by p(B), is significantly smaller than 1
(p(B) < 1), while it is unsatisfactory when p(B) ~ 1. Indeed, when B is symmetric and
positive definite, we have the explicit bound: e*) < 1_;(3) 6 for k = 1,..., where %) =
o9 = a4 = [+ — 509

We compute the spectral radius of the iteration matrix By gg associated to the Gauss-Seidel
method for the matrix As.

(nZ = 100;
!Note that the iteration matrix Bgs = I — (D — E) ' A is not in general symmetric positive definite in the usual
product induced by the matrix norm || - ||2.

inner




A2 = diag( ( 4 + 5e-5 ) % ones( n2, 1), 0 ) +
diag( - 2 x ones( n2 -1, 1), 1 ) + diag( - 2 % ones( n2 -1, 1), -1 );
D2 = diag( diag( A2 ) );
E2 = - tril( A2, -1 );
B2_.GS = eye( n2 ) - inv( D2 - E2 ) = A2;

format short e
rho2_GS = max( abs( eig( B2.GS ) ) )
rho2_GS =

9.9901e-01

o
°
o
°

format

We observe that the Gauss-Seidel method is convergent, since p(Ba2.gs) = 9.9901 - 1071 < 1.
Still, the convergence will be slow as p(Bags) ~ 1. Moreover, we deduce that the stopping
criterion based on the difference of successive iterates is unsatisfactory since p(Ba gs) ~ 1.

We consider the following implementation in MATLAB of the function.

function [ x, k, diff ] = gauss_seidel_difference_iterates( A, b, x0, tol, kmax )
GAUSS_SEIDEL solve the linear system A x = b by means

of the Gauss—-Seidel iterative method; diagonal elements of A

must be nonzero. Stopping criterion based on the difference of successive
iterates

% [ x, k, diff ] = gauss.seidel( A, b, x0, tol, kmax )

% Inputs: A = matrix (square matrix)

% b = vector (right hand side of the linear system)

% x0 = initial solution (colum vector)

% tol = tolerance for the stopping criterion based on difference
% of successive iterates

% kmax = maximum number of iterations

% Outputs: x = solution vector (column vector)

% k = numpber of iterations at convergence

% diff = difference (in norm) between successive iterates
n = size( A, 1);

k = 0;

x = x0;

diff = tol + 1;
x_.0ld = x0;

while( k < kmax && diff > tol )
for i =1 : n
Jovo = 1
j_v_old =
x( i) =1/A

i
i

i) ...

- A( 1, Jov ) * x( J-v )
A( i, j-v_.old ) * x_old( j-v-old ) );

end

diff = norm( x - x_old );

k =k + 1;

x_0old = x;
end

return




We use the previous function to verify the result of point ¢) by means of the following MATLAB
commands.

x2_ex = ones( n2, 1 );

b2 = A2 x x2_ex;

tol = 1.0e-5; kmax = 10000;

x2_0 = zeros( n2, 1 );

[ x2_gs, k2_.gs, diff2_gs ] = gauss.seidel difference_iterates( A2, b2, x2.0,
tol, kmax );

k2_gs, diff2_gs,

% k2_gs =

% 6852

% diff2_gs =

% 9.9964e-06

format short e

err2.gs = norm( x2_.ex - x2_gs )
% err2_gs =

% 1.0065e-02

format

We obtain that the convergence to the approximate solution x(¥¢) requires k., = 6852 iterations.
The final error is e(¢) = 1.0065 - 1072, whereas the norm of the difference of the last two
approximate solutions is 6(*e=1) = 9.9964-10~6. We verify that the stopping criterion based on
the norm of successive iterates is unsatisfactory for the Gauss-Seidel method, since p(Bs gg) ~
1, and the error is underestimated.

Exercise III (Theoretical)

a) The choice P = P} = P;(8) = 8D for = 1 corresponds to the Jacobi iterative method.
We observe that the elements of A on the diagonal are nonzero, so that the preconditioning
matrix Pj is invertible for all 5 > 0.

In order to calculate the values of § > 0 ensuring that the iterative method defined by the
preconditioning matrix Py () = D is convergent for all the initial solutions x(), first we need
to calculate the associated iteration matrix By = I — P L A. Then, we calculate the values of
B for which the spectral radius of the iteration matrix B;(f), denoted p; = p1(5), is < 1. We
recall that py = p1(f) = max;—1 2 |\1,:(8)|, where A1 ;(3) for i = 1,2 are the eigenvalues of the
iteration matrix B;(f).

We obtain

e [0 b
Bi(B)=1—--D'A= 3
) B 1 (1 -

and we compute the eigenvalues:

1 1 1 1
A =1—-—=-(1+— and A =1-—-(1-—].
@ =1-5 (1+ ) e =13 (1- %)
We plot the eigenvalues A; 1(8) and A\ 2(5) vs. 3 in Figure 2 (left) for g € (0,7). We plot in
Figure 2 (right) the magnitude of the eigenvalues |\ 1(5)] and |A12(5)]. In Figure 3 we plot
the spectral radius of the iteration matrix By(3). From Figure 3 we deduce that p;(8) = 1
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Figure 2: Eigenvalues A;1(8), A12(8) (left) and their magnitudes (right) vs. [ for the iteration
matrix By (f).

Spectral radius ofB1 vs. B

Figure 3: Spectral radius p;(3) vs. (3 for the iteration matrix By (f).

when |A11(8)| = 1, which yields § = 19 = % (1 + %) We also observe that p;(3) < 1 for
large 3.

We conclude that the iterative method corresponding to the choice of P = P;(8) = 8D is
convergent for 3 > B1 9 = % (1 + %) However, we observe that for § “large” the convergence

of the iterative method would be extremely slow.

The fastest convergence to the solution of the iterative method is obtained for 8 = 51 min,
where the smallest value of the spectral radius p; (/) is attained. From Figure 3 we deduce
that (1 min can be found at the intersection of the curves |\ 1(3)| and |A12(5)]. After simple
algebraic operations, we find the two intersection points S1min = 1 and p1min = %. We
conclude that the fastest convergence is achieved for 31 ;in = 1, i.e. by the Jacobi method.
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Figure 4: Eigenvalues A2 1(8), A2.2(8) (left) and their magnitudes (right) vs. [ for the iteration
matrix By (f).
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Figure 5: Spectral radius p2(5) vs. § for the iteration matrix Ba(f3).

c) We consider the preconditioner P = P»(f) = (D — E). We observe that the case § = 1
corresponds to the Gauss-Seidel method. The elements of A on the diagonal are nonzero, so
that P, is invertible for all 5 > 0.

Our goal consists in determining the values of 8 for which the convergence of the iterative
method to the solution is ensured for all x(¥). To this aim, we repeat the procedure of step
a), setting P = P»(f8) = B(D — E) and computing the spectral radius of the corresponding
iterative matrix Bo(f). We obtain

)\271(,8) =1- ; and )\272(,8) =1- 65ﬁ

We plot these eigenvalues in Figure 4 for g € (0,7). In Figure 5 we plot the spectral radius




p2(B) = max;—12|A2(B)| of the iteration matrix Ba(3). We deduce that pa(5) = 1 when
Ao1(B)] =1, ie. for B =g = 3.
We conclude that the iterative method corresponding to the choice of P = P5(5) = 8(D — E)

is convergent for any initial solution x(© as long as § > B2, = % Once again, we observe
that, for large 5, the convergence of the iterative method is extremely slow.

As in point b), from Figure 5 we deduce that pgmin corresponds to the value B2 i, for
which the curves |A21(5)| and |[A22(8)| intersect. After algebraic manipulations, we obtain
B2.min = %, corresponding to p2 min = 1—11 We conclude that the fastest convergence is
achieved, in this case, for 8 = B2min. We observe that the iterative method defined for
B = B2.min = % does not correspond to the Gauss-Seidel method.

By comparing the preconditioning matrices Py and P for 8 = 81 min and B2min, We obtain
Plmin = % and p2 min = Tll, respectively. Since p2min < p1,min, We select the iterative

method corresponding to the choice of P = P(8) = (D — E), with 5 = B2 min = %




