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Exercise I (MATLAB)

a) We consider the following implementation of the MATLAB function:

�
function [ x, k, res ] = preconditioned gradient( A, b, P, x0, tol, kmax )
% PRECONDITIONED GRADIENT solve the linear system A x = b by means
% of the Preconditioned Gadrient method; the preconditioning matrix must be
% non singular. Stopping criterion based on the residual.
% [ x, k, res ] = preconditioned gradient( A, b, P, x0, tol, kmax )
% Inputs: A = matrix (square matrix)
% b = vector (right hand side of the linear system)
% P = preconditioning matrix (non singular, same size of A)
% x0 = initial solution (colum vector)
% tol = tolerence for the stopping criterion based on residual
% kmax = maximum number of iterations
% Outputs: x = solution vector (column vector)
% k = number of iterations at convergence
% res = value of the norm of the residual at convergence
%

k = 0;
x = x0;
r = b − A * x;
res = norm( r );

while( k < kmax && res > tol )
z = P \ r;
alpha = ( z' * r ) / ( z' * A * z );
x = x + alpha * z;
r = r − alpha * A * z;
res = norm( r );
k = k + 1;

end

return� �
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b) Since the matrix A is symmetric and positive definite, we know that the gradient method is
convergent for all choices of the initial solution x(0). Moreover, since P2 is symmetric and
positive definite, we know that the preconditioned gradient method is also convergent.

We consider the following MATLAB commands.

�
n = 4;
A = diag( 5 * ones( n, 1 ), 0 ) + diag( 1 * ones( n − 1, 1 ), 1 ) + ...

diag( 1 * ones( n − 1, 1 ), −1 ) + diag( 1 * ones( n − 2, 1 ), 2 ) + ...
diag( 1 * ones( n − 2, 1 ), −2 );

x ex = ones( n, 1 );
b = A * x ex;
tol = 1.0e−6; kmax = 100;
x0 = zeros( n, 1 );
% gradient method (P=I)
P1 = eye( n );
[ x1, k1, res1 ] = preconditioned gradient( A, b, P1, x0, tol, kmax );
err1 = norm( x ex − x1 )
% err1 =
% 1.6781e−08
k1, res1
% k1 =
% 6
% res1 =
% 1.2614e−07� �
The gradient method ensures convergence to the approximate solution x(kc) satisfying the
prescribed tolerance in kc = 6 iterations.

For the preconditioned gradient method with P = P2, we obtain:

�
% preconditioned gradient method (P=P 2)
P2 = diag( diag( A ) ) + diag( diag( A, 1 ), 1 ) + diag( diag( A, − 1 ), − 1 );
[ x2, k2, res2 ] = preconditioned gradient( A, b, P2, x0, tol, kmax );
err2 = norm( x ex − x2 )
% err2 =
% 2.1285e−08
k2, res2
% k2 =
% 4
% res2 =
% 1.5999e−07� �
The convergence to the approximate solution for the prescribed tolerance occurs in kc = 4
iterations.

c) We start by recalling the following Proposition.

Proposition 1 If the matrix A ∈ Rn×n is strictly diagonally dominant by row, then the Jacobi
and Gauss-Seidel iterative methods converge to the solution x of the linear system associated
to A, say Ax = b, for any choice of the initial solution x(0).

Since A is strictly diagonally dominant by row, convergence follows for both methods.

d) We consider the following MATLAB commands.
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Figure 1: Norm of the residual r(k) vs. number of iterations k for the gradient, preconditioned
gradient, Jacobi, and Gauss-Seidel methods.

�
res PG1 v = []; res PG2 v = [];
res J v = []; res GS v = [];
klimit = 50; tol = 1e−14;
k vect = 1 : klimit;
for kmax = k vect

% gradient
[ xPG1, kPG1, resPG1 ] = preconditioned gradient( A, b, P1, x0, tol, kmax );
res PG1 v = [ res PG1 v, resPG1 ];
% preconditioned gardient
[ xPG2, kPG2, resPG2 ] = preconditioned gradient( A, b, P2, x0, tol, kmax );
res PG2 v = [ res PG2 v, resPG2 ];
% Jacobi
[ xJ, kJ, resJ ] = jacobi( A, b, x0, tol, kmax );
res J v = [ res J v, resJ ];
% Gauss−Seidel
[ xGS, kGS, resGS ] = gauss seidel( A, b, x0, tol, kmax );
res GS v = [ res GS v, resGS ];

end
semilogy( k vect, res PG1 v, '−b', k vect, res PG2 v, '−r', ...

k vect, res J v, '−m', k vect, res GS v, '−k' );
axis( [ 1 klimit 1e−13 10 ])
legend('Gradient', 'Prec.Gradient', 'Jacobi', 'Gauss−Seidel' );� �
We obtain the result reported in Figure 1. We deduce that, in this case, the preconditioned
gradient method with P = P2 ensures a faster convergence than with the gradient, Jacobi,
and Gauss-Seidel methods.

Exercise II (MATLAB)

a) The stopping criterion based on the relative residual is satisfactory if the conditioning number
of the matrix A is not “too large”. Indeed, the following estimate for the relative error on the

3



solution e
(k)
rel =

∥x−x(k)∥
∥x∥ holds:

e
(k)
rel ≤ K2(A) r

(k)
rel , for all k = 0, 1, . . . ,

where r
(k)
rel =

∥r(k)∥
∥b∥ is the relative residual and K2(A) is the condition number of the matrix

A.

We verify that the condition number of the matrix A is very “large” by using the following
MATLAB commands:

�
n1 = 15;
A1 = hilb( n1 );
k2 1 = cond( A1 )
% k2 1 =
% 4.4333e+17� �

b) We verify the answer given at point a) with the following MATLAB commands:

�
x1 ex = ones( n1, 1 );
b1 = A1 * x1 ex;
x1 0 = zeros( n1, 1 );
% criterion based on RELATIVE residual
tol rel = 1.0e−5; kmax = 1000;
tol = tol rel * norm( b1 );
[ x1 gs, k1 gs, res1 gs ] = gauss seidel( A1, b1, x1 0, tol, kmax );
k1 gs
% k1 gs =
% 599
res rel1 gs = res1 gs / norm( b1 )
% res rel1 gs =
% 9.9853e−06
err rel1 gs = norm( x1 ex − x1 gs ) / norm( x1 ex )
% err rel1 gs =
% 0.0412� �
Convergence to the approximate solution occurs in kc = 599 iterations. We observe that the

relative residual at convergence is r
(kc)
rel = 9.9853 · 10−6, while the relative error is e

(kc)
rel =

4.1220 · 10−2, which is significantly larger than r(kc).

c) The stopping criterion based on the difference of successive iterates is satisfactory if the
spectral radius of the iteration matrix B, denoted by ρ(B), is significantly smaller than 1
(ρ(B) ≪ 1), while it is unsatisfactory when ρ(B) ≃ 1. Indeed, when B is symmetric and
positive definite, we have the explicit bound: e(k) ≤ 1

1−ρ(B) δ
(k), for k = 1, . . ., where e(k) =∥∥e(k)∥∥ =

∥∥x− x(k)
∥∥ and δ(k) =

∥∥x(k+1) − x(k)
∥∥.1

We compute the spectral radius of the iteration matrix B2,GS associated to the Gauss-Seidel
method for the matrix A2.�
n2 = 100;

1Note that the iteration matrix BGS = I − (D − E)−1A is not in general symmetric positive definite in the usual
inner product induced by the matrix norm ∥ · ∥2.
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A2 = diag( ( 4 + 5e−5 ) * ones( n2, 1 ), 0 ) + ...
diag( − 2 * ones( n2 − 1, 1 ), 1 ) + diag( − 2 * ones( n2 − 1, 1 ), −1 );

D2 = diag( diag( A2 ) );
E2 = − tril( A2, −1 );
B2 GS = eye( n2 ) − inv( D2 − E2 ) * A2;
format short e
rho2 GS = max( abs( eig( B2 GS ) ) )
% rho2 GS =
% 9.9901e−01
format� �
We observe that the Gauss-Seidel method is convergent, since ρ(B2,GS) = 9.9901 · 10−1 < 1.
Still, the convergence will be slow as ρ(B2,GS) ≃ 1. Moreover, we deduce that the stopping
criterion based on the difference of successive iterates is unsatisfactory since ρ(B2,GS) ≃ 1.

d) We consider the following implementation in MATLAB of the function.

�
function [ x, k, diff ] = gauss seidel difference iterates( A, b, x0, tol, kmax )
% GAUSS SEIDEL solve the linear system A x = b by means
% of the Gauss−Seidel iterative method; diagonal elements of A
% must be nonzero. Stopping criterion based on the difference of successive
% iterates
% [ x, k, diff ] = gauss seidel( A, b, x0, tol, kmax )
% Inputs: A = matrix (square matrix)
% b = vector (right hand side of the linear system)
% x0 = initial solution (colum vector)
% tol = tolerance for the stopping criterion based on difference
% of successive iterates
% kmax = maximum number of iterations
% Outputs: x = solution vector (column vector)
% k = number of iterations at convergence
% diff = difference (in norm) between successive iterates
%

n = size( A, 1 );

k = 0;
x = x0;
diff = tol + 1;

x old = x0;

while( k < kmax && diff > tol )
for i = 1 : n

j v = 1 : i − 1;
j v old = i + 1 : n;
x( i ) = 1 / A( i, i ) * ( b( i ) ...

− A( i, j v ) * x( j v ) ...
− A( i, j v old ) * x old( j v old ) );

end
diff = norm( x − x old );
k = k + 1;
x old = x;

end

return� �
5



We use the previous function to verify the result of point c) by means of the following MATLAB
commands.

�
x2 ex = ones( n2, 1 );
b2 = A2 * x2 ex;
tol = 1.0e−5; kmax = 10000;
x2 0 = zeros( n2, 1 );
[ x2 gs, k2 gs, diff2 gs ] = gauss seidel difference iterates( A2, b2, x2 0, ...

tol, kmax );
k2 gs, diff2 gs,
% k2 gs =
% 6852
% diff2 gs =
% 9.9964e−06
format short e
err2 gs = norm( x2 ex − x2 gs )
% err2 gs =
% 1.0065e−02
format� �
We obtain that the convergence to the approximate solution x(kc) requires kc = 6852 iterations.
The final error is e(kc) = 1.0065 · 10−2, whereas the norm of the difference of the last two
approximate solutions is δ(kc−1) = 9.9964·10−6. We verify that the stopping criterion based on
the norm of successive iterates is unsatisfactory for the Gauss-Seidel method, since ρ(B2,GS) ≃
1, and the error is underestimated.

Exercise III (Theoretical)

a) The choice P = P1 = P1(β) = βD for β = 1 corresponds to the Jacobi iterative method.
We observe that the elements of A on the diagonal are nonzero, so that the preconditioning
matrix P1 is invertible for all β > 0.

In order to calculate the values of β > 0 ensuring that the iterative method defined by the
preconditioning matrix P1(β) = βD is convergent for all the initial solutions x(0), first we need
to calculate the associated iteration matrix B1 = I − P−1

1 A. Then, we calculate the values of
β for which the spectral radius of the iteration matrix B1(β), denoted ρ1 = ρ1(β), is < 1. We
recall that ρ1 = ρ1(β) = maxi=1,2 |λ1,i(β)|, where λ1,i(β) for i = 1, 2 are the eigenvalues of the
iteration matrix B1(β).

We obtain

B1(β) = I − 1

β
D−1A =

 (
1− 1

β

)
1
3β

1
2β

(
1− 1

β

)  ,

and we compute the eigenvalues:

λ1,1(β) = 1− 1

β

(
1 +

1√
6

)
and λ1,2(β) = 1− 1

β

(
1− 1√

6

)
.

We plot the eigenvalues λ1,1(β) and λ1,2(β) vs. β in Figure 2 (left) for β ∈ (0, 7). We plot in
Figure 2 (right) the magnitude of the eigenvalues |λ1,1(β)| and |λ1,2(β)|. In Figure 3 we plot
the spectral radius of the iteration matrix B1(β). From Figure 3 we deduce that ρ1(β) = 1
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Figure 2: Eigenvalues λ1,1(β), λ1,2(β) (left) and their magnitudes (right) vs. β for the iteration
matrix B1(β).
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Figure 3: Spectral radius ρ1(β) vs. β for the iteration matrix B1(β).

when |λ1,1(β)| = 1, which yields β = β1,0 = 1
2

(
1 + 1√

6

)
. We also observe that ρ1(β) < 1 for

large β.

We conclude that the iterative method corresponding to the choice of P = P1(β) = βD is

convergent for β > β1,0 =
1
2

(
1 + 1√

6

)
. However, we observe that for β “large” the convergence

of the iterative method would be extremely slow.

b) The fastest convergence to the solution of the iterative method is obtained for β = β1,min,
where the smallest value of the spectral radius ρ1(β) is attained. From Figure 3 we deduce
that β1,min can be found at the intersection of the curves |λ1,1(β)| and |λ1,2(β)|. After simple
algebraic operations, we find the two intersection points β1,min = 1 and ρ1,min = 1√

6
. We

conclude that the fastest convergence is achieved for β1,min = 1, i.e. by the Jacobi method.

7



Figure 4: Eigenvalues λ2,1(β), λ2,2(β) (left) and their magnitudes (right) vs. β for the iteration
matrix B2(β).

Figure 5: Spectral radius ρ2(β) vs. β for the iteration matrix B2(β).

c) We consider the preconditioner P = P2(β) = β(D − E). We observe that the case β = 1
corresponds to the Gauss-Seidel method. The elements of A on the diagonal are nonzero, so
that P2 is invertible for all β > 0.

Our goal consists in determining the values of β for which the convergence of the iterative
method to the solution is ensured for all x(0). To this aim, we repeat the procedure of step
a), setting P = P2(β) = β(D − E) and computing the spectral radius of the corresponding
iterative matrix B2(β). We obtain

λ2,1(β) = 1− 1

β
and λ2,2(β) = 1− 5

6β
.

We plot these eigenvalues in Figure 4 for β ∈ (0, 7). In Figure 5 we plot the spectral radius
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ρ2(β) = maxi=1,2 |λ2,i(β)| of the iteration matrix B2(β). We deduce that ρ2(β) = 1 when
|λ2,1(β)| = 1, i.e. for β = β2,0 =

1
2 .

We conclude that the iterative method corresponding to the choice of P = P2(β) = β(D−E)
is convergent for any initial solution x(0) as long as β > β2,0 = 1

2 . Once again, we observe
that, for large β, the convergence of the iterative method is extremely slow.

d) As in point b), from Figure 5 we deduce that ρ2,min corresponds to the value β2,min for
which the curves |λ2,1(β)| and |λ2,2(β)| intersect. After algebraic manipulations, we obtain
β2,min = 11

12 , corresponding to ρ2,min = 1
11 . We conclude that the fastest convergence is

achieved, in this case, for β = β2,min. We observe that the iterative method defined for
β = β2,min = 11

12 does not correspond to the Gauss-Seidel method.

e) By comparing the preconditioning matrices P1 and P2 for β = β1,min and β2,min, we obtain
ρ1,min = 1√

6
and ρ2,min = 1

11 , respectively. Since ρ2,min < ρ1,min, we select the iterative

method corresponding to the choice of P = P2(β) = β(D − E), with β = β2,min = 11
12 .
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